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Spain; and‡ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, Virginia 23681-2199
E-mail: rubensm@dacya.ucm.es; llorente@dacya.ucm.es; salas@icase.edu

Received June 6, 2000; revised June 11, 2001

Anisotropies occur naturally in computational fluid dynamics where the simula-
tion of small-scale physical phenomena, such as boundary layers at high Reynolds
numbers, causes the grid to be highly stretched, leading to a slowdown in conver-
gence of multigrid methods. Several approaches aimed at making multigrid a robust
solver have been proposed and analyzed in the literature using the scalar diffusion
equation. However, they have rarely been applied to solving more complicated mod-
els, such as the incompressible Navier–Stokes equations. This paper contains the
first published numerical results of the behavior of two popular robust multigrid
approaches (alternating-plane smoothers combined with standard coarsening and
plane-implicit smoothers combined with semi-coarsening) for solving the 3-D in-
compressible Navier–Stokes equations in the simulation of the driven-cavity and a
boundary layer over a flat plate on a stretched grid. Grid size, grid stretching, and
Reynolds number are the factors considered in evaluating the robustness of the multi-
grid methods. Both approaches yield large increases in convergence rates over cell-
implicit smoothers on stretched grids. The combination of plane-implicit smoothers
and semi-coarsening was found to be fully robust in the flat-plate simulation up
to Reynolds numbers 106 and the best alternative in the driven-cavity simulation
for Reynolds numbers above 103. The alternating-plane approach exhibits a better
behavior for lower Reynolds numbers (below 103) in the driven-cavity simulation.
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1. INTRODUCTION

Multigrid techniques are generally accepted as fast and efficient methods for solving many
types of partial differential equations, and particularly elliptic problems whose discretiza-
tion results in a K-matrix [24]. For this kind of problem, basic point-wise iterative methods,
such as Gauss–Seidel or damped Jacobi, are good smoothers, and multigrid methods exhibit
an optimal complexity (work is linearly proportional to the number of unknowns), optimal
memory requirements, and good parallel efficiency and scalability in parallel implementa-
tions [9].

However, the efficiency of the multigrid methods degenerates dramatically in presence of
anisotropies. It is well known that in the resolution of the Poisson equation the convergence
factor of the multigrid method tends to one as the anisotropies are increased [1]. Typically
these anisotropies might occur when the coefficients of the discrete operator vary throughout
the domain or when stretched grids are used. This anisotropic condition occurs naturally
in the field of computational fluid dynamics (CFD) where the simulation of small-scale
physical phenomena, such as boundary layers at high Reynolds numbers, causes the grid
to be highly stretched, leading to a slowdown in convergence.

In some situations, when the source of the anisotropy is known beforehand, a block-
implicit smoother can be used to improve the efficiency of the multigrid algorithm. Usu-
ally this is done by applying an implicit solver in the directions of strong coupling, as
states Brandt’s fundamental block relaxation rule [1]. This technique is common prac-
tice in CFD. Thomas, Diskin, and Brandt [21] have demonstrated the efficiency of the
distributive smoothing scheme with line solvers applied to high Reynolds number simu-
lations when the grid stretching is normal to the body. The benefits of plane relaxation
are shown by Oosterlee in [16] for simulations of the 3-D incompressible Navier–Stokes
equations over grids with nonunitary aspect ratios. Also, a combination of line-implicit
techniques and semi-coarsening has been successfully used by Mavriplis in [10, 11] to
solve high Reynolds number 2-D and 3-D viscous flows over anisotropic unstructured
meshes.

However, in a general situation the nature of the anisotropy is not known beforehand,
so there is no way of knowing which variables are coupled. Moreover, if the problem is
solved on a stretched grid or the equation coefficients differ from each other throughout the
domain (computational and physical anisotropy respectively) the values of the coefficients
and their relative magnitudes vary for different parts of the computational domain. In such
cases the multigrid techniques based on point- or plane-wise smoothers combined with
full coarsening fail to smooth error components with the consequent deterioration of the
multigrid convergence factor.

Several approaches aimed at making multigrid a robust solver have been proposed in the
literature. One popular approach is to use standard coarsening combined with an alternating-
direction implicit smoother [8, 12, 20]. This solution consists of exploring all the possibilities
in order to develop a robust smoother, i.e., uses alternating-line relaxation in 2-D and
alternating-plane relaxation in 3-D. Another approach to dealing with anisotropic problems
is to combine an implicit smoother with an appropriate semi-coarsening procedure [4, 19].
This is rather popular in the literature and overcomes some parallelization problems that can
be found in the alternating-plane smoothers [13]. For example, a simple way to avoid using
an alternating-plane smoother is to use semi-coarsening in one direction and relaxation in a
fixed plane (e.g., combinexy-plane relaxation withZ semi-coarsening). Other intermediate
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alternatives that combine plane, line, or point relaxations with partial and full coarsening
have also been presented in multigrid literature [14, 15].

Some of these robust multigrid approaches have also been tested for the efficient res-
olution of the 2-D Navier–Stokes equations. The alternating-direction line smoother has
been investigated for the solution of the incompressible 2-D Navier–Stokes equations in
[22, 17]. However, to the authors’ knowledge, the robust multigrid algorithms have never
been applied to the resolution of the 3-D incompressible Navier–Stokes equations. The aim
of this work is to present a thorough study of the application of two common robust multi-
grid algorithms (alternating-plane smoothers combined with standard coarsening and plane
smoothers combined with semi-coarsening) to the resolution of the 3-D Navier–Stokes
equations on single-block structured grids.

The robustness of a smoother is defined as its ability to efficiently solve a wide range of
problems. In this sense the definition of robustness is qualitative and has to be defined
more precisely by setting up a set of suitable test problems. Traditionally, the above-
mentioned approaches have shown to be robust smoothers for the anisotropic diffusion
equation. In the present context we will characterize the multigrid algorithms as robust
if the solution of the governing system of equations can be attained in a fixed amount of
work units (computational time to discretize the partial differential equations in the finest
level) independent of the grid size, grid-stretching factor, and Reynolds number. This is
equivalent to saying that the convergence factor of the multigrid algorithm is independent
of the grid size, stretching, and Reynolds number. We will also refer to this property as
textbook multigrid convergence(TMC). We believe that the achievement of a textbook
multigrid convergence rate through increasing the work and memory requirements per cy-
cle is the first step to achievingtextbook multigrid efficiency(TME). The TME, defined
by Brandt in [1], fixes the computational work to solve the problem to 10 or fewer work
units.

This paper is organized as follows: The numerical scheme used by our simulations is
described in Section 2. Details of the implementation of the multigrid algorithm used in
this work are presented in Section 3. Numerical results are obtained in Section 4 for two
common benchmarks in CFD: the driven cavity and the flow over a flat plate. In this section,
the robustness of the alternating-plane smoothers combined with full coarsening and plane
smoothers combined with semi-coarsening will be investigated. The paper ends with some
conclusions in Section 5.

2. THE PRIMITIVE EQUATIONS

The dimensionless, steady-state, incompressible Navier–Stokes equations in the absence
of body forces may be written as

(u · ∇)u = −∇ p+ 1

Re
1u,

(1)
∇ · u = 0,

whereu ∈ <3 = (u, v, w) is the nondimensional velocity field andp is the dimensionless
pressure.Reis the Reynolds number defined asRe= U∞L/ν, whereU∞ is a characteristic
velocity, L ’s a characteristic length, andν is the kinematic viscosity.
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FIG. 1. Placement of the unknowns in the CV (left-hand chart). Control volume where theu-momentum
equation is integrated (right-hand chart).

2.1. Discretization

In order to obtain the discrete expression of the nonlinear system, the solution domain
is divided into a finite set of control volumes (CVs). In the present work we will use an
orthogonally structured grid where each control volume will be hexahedron, as in the left-
hand chart in Fig. 1. The variables are stored in a staggered way; i.e., the velocities are
evaluated in the faces of the CV and the pressure field at the center of each CV. Staggered
discretization has the benefits of stability properties and leads to a natural discrete form of
the continuity equation [5, 7].

The procedure carried out to discretize theu-momentum equation will now be described
with some detail. In a staggered arrangement of unknowns each equation is integrated in
its own CV. Theu-momentum CV is built surrounding theui jk variable, displaced from the
CV of the continuity equation, as in the right-hand chart in Fig. 1. In the following, we will
refer to the dimensions of this CVÄ as1X,1Y,1Z. So we can write theu-momentum
equation for a generic nodeui jk in its integral form in Cartesian coordinates as∫

Ä

u · ∇u dV = −
∫
Ä

∂p

∂x
dV + 1

Re

∫
Ä

1u dV. (2)

The convective term in the momentum equation using the Gauss theorem is rewritten as∫
Ä

u · ∇u dV =
∫
∂Ä

u(u · n) dS=
∑

k

∫
∂Äk

u(u · n) dS, k = e, w, s, n, t, b, (3)

where the indexese, w, . . . stand for the standard cardinal notation (see [5]).
The last integral in Eq. (3) is easily approximated applying the midpoint rule. Providing

the value of the function in the middle of the face results in the leading truncation term
beingO(h2). Thus, to preserve this accuracy the interpolation of the fluxes at the CV faces
has to be at least of second order. This is assured by using a parabolic interpolation for the
velocities and linear interpolation for the mass fluxes. Moreover, for nonuniform grids the
fluxes are not computed at the middle of the CV. So, assuming a stretched geometric grid
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of the formhk+1 = βhk with β as the grid-stretching factor, the integral approximation will
have a truncation errorO((β − 1)h)+O(h2). Taking these considerations into account the
integral in Eq. (3) is written as

∑
k

∫
∂Äk

u(u · n) dS≈
∑

k

mkuk, k = e, w, s, n, t, b, (4)

where the mass fluxesmk have been defined as
∫
∂Äk

u · n dSand can be evaluated with the
expressions

mw = ui jk + ui−1 jk

2
1Y1Z, me = ui jk + ui+1 jk

2
1Y1Z,

ms = vi jk1xi + vi−1 jk1xi+1

2
1Z, mn = vi j+1k1xi + vi−1 j+1k1xi+1

2
1Z,

mb = wi jk1xi + wi−1 jk1xi+1

2
1Y, mt = wi jk+11xi + wi−1 jk+11xi+1

2
1Y,

with 1xi+1 = xi+1 jk − xi jk and1xi = xi jk − xi−1 jk (see Fig. 1). The velocity at the CV
face is interpolated by fitting a parabola to the values of the velocity at three consecutive
nodes: the two nodes located on either side of the surface of interest plus the adjacent node
in the upstream direction. In this work we will use the QUICK formulation of Hayase
et al. [6], which can be seen as a defect-correction scheme based on the upwind difference
approximation:

ue =
{

ui jk + S+e (u · n)e > 0,

ui+1 jk + S−e (u · n)e < 0,
uw =

{
ui jk + S+w (u · n)w > 0,

ui−1 jk + S−w (u · n)w < 0,

un =
{

ui jk + S+n (u · n)n > 0,

ui j+1k + S−n (u · n)n < 0,
us =

{
ui jk + S+s (u · n)s > 0,

ui j−1k + S−s (u · n)s < 0,

ut =
{

ui jk + S+t (u · n)t > 0,

ui jk+1+ S−t (u · n)t < 0,
ub =

{
ui jk + S+b (u · n)b > 0,

ui jk−1+ S−b (u · n)b < 0.

The defect-correction source termsS+ andS− are calculated within the multigrid cycle
using the current approximation whenever a discrete evaluation of the residual is needed.
So the algebraic coefficients for the convection terms can be written as

Lc
e = min(0,me), Lc

w = min(0,mw), Lc
n = min(0,mn),

Lc
s = min(0,ms), Lc

t = min(0,mt ), Lc
b = min(0,mb), (5)

Lc
p = −

(
Lc

e+ Lc
n + Lc

s + Lc
b + Lc

t + Lc
w

)
.

The expression forLc
p has been obtained using the continuity equation over the CVÄ,

which in its discrete form is

me+mw +mn +ms +mt +mb = 0.
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Using the Gauss theorem in the diffusive part of the momentum equation (3) and the
midpoint rule to approximate the resulting surface integral we get

∫
∂Ä

∇u · n dS≈
[(
∂u

∂x

)
e

−
(
∂u

∂x

)
w

]
1Sx

+
[(
∂u

∂y

)
n

−
(
∂u

∂y

)
s

]
1Sy +

[(
∂u

∂z

)
t

−
(
∂u

∂z

)
b

]
1Sz. (6)

The derivatives in the above expression are evaluated with a central difference scheme:

Ld
e =

1Y1Z

Re(xi+1 jk − xi jk )
, Ld

w =
1Y1Z

Re(xi jk − xi−1 jk)
, Ld

n =
21X1Z

Re(yi j+1k − yi j−1k)
,

Ld
s =

21X1Z

Re(yi j+2k − yi jk )
, Ld

t =
21Y1X

Re(zi jk+1− zi jk−1)
, Ld

b =
21Y1X

Re(zi jk+2− zi jk )
, (7)

Ld
p = −

(
Ld

e + Ld
n + Ld

s + Ld
b + Ld

t + Ld
w

)
.

Finally, treating the pressure as a surface force the volume integral in Eq. (2) can be
expressed as a surface integral, as in Eq. (8). Again this is evaluated using the midpoint rule
approximation,

−
∫

∂Ä

p i · n dS≈ (pw − pe) 1Sx i = (1, 0, 0). (8)

In this case no interpolation is needed for the pressure because of the staggered arrange-
ments of unknowns, as can be seen in the right-hand chart in Fig. 1. Now, we can write the
algebraic equation for a generic velocity nodeui jk as

Lu
wui−1 jk + Lu

eui+1 jk + Lu
sui j−1k + Lu

nui j+1k + Lu
bui jk−1

+ Lu
t ui jk+1+ Lu

pui jk + L p
p pi jk + L p

w pi−1 jk = Fi jk . (9)

The coefficients multiplying the velocityu are obtained as the sum of the diffusive and
convective parts, (i.e.,Lu

l = Lc
l + Ld

l with l = e, w,n, s, b, t) and those multiplying the
pressure are obtained directly from Eq. (8). An equivalent expression may be obtained
for the v- andw-momentum equations and can be derived by symmetry from the above
equations.

The continuity equation can be easily approximated because all velocities are known
within the surface of the volume:∫

Ä

∇ · u dV ≈ (ue− uw)1Y1Z + (vn − vs)1X1Z + (wt − wb)1X1Y. (10)

The above expressions are valid for CVs inside the domain and must be modified in
order to satisfy the conditions. The discretization of the boundary conditions is performed
by mirroring the cells adjacent to the boundary. The new variables outside the solution
domain are extrapolated invoking the condition at each boundary. With these modifications
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of the algebraic equations the system of nonlinear equations to be solved can be presented
in a matrix form as 

Lh
u 0 0 Lh

p

0 Lh
v 0 Lh

p

0 0 Lh
w Lh

p

Lh
m Lh

m Lh
m 0




u
v

w

p

 =


fu

fv
fw
f p

 , (11)

where the source termsfu, fv, fw, and f p in the right-hand side of the system include the
discretization of the boundary conditions and the contribution of the QUICK scheme.

3. THE MULTIGRID METHOD

A sequence of gridsÄl (l = 1, . . . ,M) is used in the full multigrid (FMG) scheme [1]
whereÄ1 is the finest target grid and the rest of the grids are obtained by applying cell-
centered coarsening. The computations are initiated in the coarsest grid; once the discrete
system is solved the solution is transferred to the next finer level. The prolongated solution
is then used as an initial guess for the multigrid method in that level. This procedure is
repeated until the finest grid is reached. The goal of this algorithm is to reduce the algebraic
error to below the discretization error in just one FMG cycle.

Because of the nonlinearity of the problem, a full approximation scheme (FAS) [1] is
used to solve each level in the FMG cycle. The following iterative algorithm represents a
FAS V(γ1, γ2)-cycle to solve the nonlinear systemLu = f onÄ1 whereγ1 andγ2 represent
the number of pre-smoothing and post-smoothing iterations respectively.

ALGORITHM 1 (FAS V(γ1, γ2)).

1. Pre-smoothing: Apply γ1 iterations of the smoothing method toL1u1 = f 1

2. FOR l= 1 TO L Restriction Part
3. Compute the residualr l−1 = f l−1− Ll−1ul−1

4. Restriction of the residualr l = Rl
l−1r

l−1

5. Restriction of the solutionul
old = I l

l−1ul−1

6. Compute the metrics of level lLl (ul
old)

7. Calculate the new right-hand sidef l = r l + Ll ul
old

8. Pre-smoothing: Apply γ1 iterations of the smoothing method toLl ul = f l

9. FOR l= L − 1 TO 1 Prolongation Part
10. Correction of the current approximationul = ul + Pl+1

l (ul+1− ul+1
old )

11. Compute the metrics of level lLl (ul )

12. Post-smoothing: Apply γ2 iterations of the smoothing method toLl ul = f l

In steps 6 and 11 the metrics of the system are computed over the current grid, which
includes the computation of the correction terms from the QUICK scheme and also the
linearization of the system based on the actual solution. Note that the metrics of the system
are also updated within the smoothing process in steps 8 and 12 as explained in Section 3.1.
The operatorsRl

l−1 andPl+1
l in steps 3 and 8 are used to transfer data (solution and residuals)

between two different grids: from the coarser level to the current (prolongation) or from the
finer to the current level (restriction), respectively.

These transfer operators are dictated by the staggered arrangement of unknowns and the
coarsening procedure used. The prolongation and restriction operators are volume-weighted
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FIG. 2. Scheme of an F-cycle F(γ1,γ2) whereγ0 represents the number of iterations of the smoother performed
to solve the coarsest level.

trilinear interpolation in the case of standard coarsening. For the semi-coarsening approach
the velocity component parallel to the coarsened direction is restricted using injection; the
other variables are restricted using volume-weighted linear interpolation in lines parallel to
the coarsened direction. The prolongation operator in this case is volume-weighted linear
interpolation. Note that for semi-coarsening the velocity component parallel to the coarsened
direction is treated in a vertex-centered way, while the rest of the variables are transferred
as cell centered.

In the following experiments F-cycles will be used (see Fig. 2) to solve each level of
the FMG algorithm. F-cycles have been reported to be more efficient for rotating problems
[17] at the expense of their parallel properties [10]. The coarsest level is fixed as coarse as
possible, and it will be solved with five iterations of the smoothing process.

3.1. Smoothing Process

One of the most important parts of a multigrid algorithm is the smoothing process. Several
smoothers for the Navier–Stokes equations problem were studied in the literature. These
approaches fall into two categories: 1. coupled smoothing [23, 16, 22] where the momentum
and continuity equations are satisfied simultaneously), and 2. distributive smoothing [21, 3]
(where the momentum equations are solved in a first step, and then the velocities and pres-
sures are corrected in order to satisfy the continuity equation). In situations where the co-
efficients vary through the CV (e.g., stretched grids, strong recirculating flows,. . .)coupled
smoothing has advantages over the distributive approach because the linearized momentum
and continuity equations are solved simultaneously [23, 7]. However, the computational
cost of the coupled method is much higher than that of the distributive. Note that a (small)
matrix has to be inverted in each CV. Moreover, every velocity component is updated es-
sentially twice since it updates all the variables involved in a CV simultaneously (see the
right-hand chart in Fig. 1).

In particular, we have chosen a cell-implicit symmetric coupled Gauss-Seidel (SCGS)
method as the base smoother because of its higher stability and rapid convergence. This
smoother was introduced by Vanka [23] and also considered by Thompson and Tenziger
[22]. Considering the CVi jk , the momentum equations for the six cell faces together with
the continuity equation for the CV can be expressed as

∑
|m|+|n|+|p|≤1

Luw
i+m, j+n,k+pui+m, j+n,k+p + Luw

pi
pi jk + Luw

pi−1
pi−1 jk = f u

i jk ,∑
|m|+|n|+|p|≤1

Lue
i+m, j+n,k+pui+m, j+n,k+p + Lue

pi
pi+1 jk + Lue

pi−1
pi jk = f u

i+1 jk,
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∑
|m|+|n|+|p|≤1

Lvs
i+m, j+n,k+pvi+m, j+n,k+p + Lvs

pj
pi jk + Luv

pj−1
pi j−1k = f vi jk ,∑

|m|+|n|+|p|≤1

Lvn
i+m, j+n,k+pvi+m, j+n,k+p + Lvn

pj
pi j+1k + Lvn

pj−1
pi jk = f vi j+1k, (12)

∑
|m|+|n|+|p|≤1

Lwb
i+m, j+n,k+pwi+m, j+n,k+p + Lwb

pk
pi jk + Lwb

pk−1
pi jk−1 = f wi jk ,∑

|m|+|n|+|p|≤1

Lwt
i+m, j+n,k+pwi+m, j+n,k+p + Lwt

pk
pi jk+1+ Lwt

pk−1
pi jk = f wi jk+1,

(ui+1 jk − ui jk )

1X
+ (vi j+1k − vi jk )

1y
+ (wi jk+1− wi jk )

1Z
= f m

i jk .

This set of equations for the CV is linearized by computing the mass fluxes,Lu,v,w, with
the current values of the velocity field. Defining the residualsr u,v,w and the corrections
1u = un+1− un, etc. the system (12) can be arranged in a block structure as follows:



Luw
i jk 0 0 0 0 0 Luw

pi

0 Lue
i+1 jk 0 0 0 0 Lue

pi−1

0 0 Lvs
i jk 0 0 0 Lvs

pj

0 0 0 Lvn
i j+1k 0 0 Lvn

pj−1

0 0 0 0 Lwb
i jk 0 Lwb

pk

0 0 0 0 0 Lwt
i jk+1 Lwt

pk−1

− 1
1X

1
1X − 1

1Y
1
1Y − 1

1Z
1
1Z 0





1ui jk

1ui+1 jk

1vi jk

1vi j+1k

1wi jk

1wi jk+1

1pi jk


=



r u
i jk

r u
i+1 jk

r vi jk

r vi j+1k

r wi jk

r wi jk+1

r m
i jk


.

(13)

A more implicit version of Eqs. (13) that includes off-diagonal elements in the first six
rows is also possible; this is equivalent to considering implicitly in the Eqs. (12) all the
unknowns involved in the CV. However, the convergence factor is similar and the system is
more expensive to solve than the system of Eqs. (13) [22]. The system (13) is easily solved
by Gaussian elimination and then the velocity components and the pressure of the CV are
updated using underrelaxation:

un+1 = un + ωu1u,
(14)

pn+1 = pn + ωp1p.

The underrelaxation technique has the effect of adding a pseudo–time dependent term
in the equations. In the following simulations the underrelaxation factor for the pressure,
ωp, has been fixed to 1.0, while the underrelaxation factor for the velocities,ωu, is strongly
problem dependent and has to be set empirically. The optimum value ofωu is a function of
the Reynolds number and the grid size and also depends on whether the convection scheme
is first- (upwind) or second-order (QUICK) accurate. This is a drawback of this smoother,
since a simulation has to be tuned in order to find out the best underrelaxation factor. As
Fig. 3 shows, the efficiency of the method can be dramatically worsened with a bad choice
of ωu.
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FIG. 3. Number of fine-grid cycles required to converge a driven-cavity simulation withRe= 500 on a
16× 16× 16 uniform grid as a function of the relaxation parameterωu.

3.2. Plane-Implicit Smoothers

Implicit solvers have been widely considered in previous work as a cure to eliminating
all the high-frequency errors in the presence of strong anisotropies. Taking advantage of
the relatively small 1-D problem size, these implicit-line smoothers are based on an exact
solver. However, the 3-D counterpart does not present this possibility, since the 2-D problem
size is no longer small enough for us to consider using an exact solver. Furthermore a direct
exact solver for the planes is not needed, as has been shown in [8] for the 3-D Poisson
equation and in [16] for the incompressible Navier–Stokes equations. This consideration
drastically reduces the computational cost of the overall algorithm compared with that of
an exact plane solver. However, this inexact solution of the planes does not decrease the
convergence of the multigrid algorithm [16, 8]; in other words, solving the plane beyond
a precision threshold does not improve the convergence rate. Note that the plane-implicit
smoother has to damp high oscillating error components in the plane rather than solve a
2-D problem exactly.

In the present work, the planes will be approximately solved with a 2-D multigrid algo-
rithm consisting of one FAS F(1,1)-cycle. The same kind of anisotropies found in the 3-D
problem may appear in the 2-D system. Thus a robust multigrid algorithm is, again, com-
pletely necessary. For the 2-D system the same robust algorithms will be considered, i.e.,
an alternating-line smoother combined with full coarsening and a line-implicit smoother
combined with semi-coarsening. In the following simulations, the 2-D algorithm used to
solve the planes will be the 3-D counterpart, i.e., an alternating-line smoother when using
an alternating-plane smoother and a semi-coarsened line smoother when using a semi-
coarsened plane smoother. One 1-D FAS F(1, 1)-cycle will be applied to solve the lines, the
smoother in this case being SCGS as described in the previous section.

The coupled philosophy of the SCGS will be applied in the line and plane solvers. The
plane smoother relaxes simultaneously the momentum and continuity equations of the cells
included in the plane, and hence all velocity components and pressures contained within the
plane will be updated at the same time. Let us consider for example anxy plane, defining
the vectorXk that accommodates the variables for a whole plane of cells:

XT
k = (u, v,w,w+, p), u = ui jk , v = vi jk , w = wi jk , w+ = wi jk+1,

p = pi jk , ∀i, j ∈ [0, n], k = const. (14)
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The equation system for the plane in terms of residuals and corrections is

Lk1Xk = Rk, (15)

where Rk = fk − Lk Xk is the residual of thekth plane and1Xk = Xn+1
k − Xn

k is the
increment of the solution. The system of equations (15) is built into the smoothing process
as follows. When solving for thekth plane, the metrics in that plane are linearized using the
current solution. Also the second-order correction for the convective term is recomputed.
With these new metrics the residualRk for thekth plane is calculated.

Defining a specific ordering of the planes, we can easily construct many types of plane
smoothers. It is important to note that with the second-order operator, the right-hand side
of the system (15) depends on the values of the planek, k± 1 and/ork± 2, depending on
the direction of the velocity. Thus a parallel implementation cannot be constructed based
on a regular zebra ordering (left-hand chart in Fig. 4). In order to avoid these dependencies
a tri-plane smoother could be applied [17] (right-hand chart in Fig. 4).

Grid stretching is commonly used in grid generation to pack points into regions with
large solution gradients while avoiding an excess of points in more benign regions (for
example in the simulation of viscous flows at high Reynolds numbers to resolve bound-
ary layers). The convergence of multigrid based on point smoothing and full coarsen-
ing deteriorates dramatically when highly stretched grids are used. In some situations,
when the direction of the anisotropies is known beforehand, the multigrid convergence
can be improved using an implicit smoother in the direction normal to the stretching.
However, if the stretched grid generates aspect ratios whose relative magnitudes vary for
different parts of the computational domain, the multigrid techniques based on plane-
wise smoothers combined with full coarsening fail to smooth error components. Other
remedies should be used to achieve a robust solver. The two most common alternatives
are:

Robust multigrid smoothing process with standard coarsening.If the coarser grids are
built by doubling the mesh size in all coordinate directions, sweeps of the planes in

FIG. 4. Standard zebra ordering of planes (left-hand chart). Planes relaxed concurrently in a tri-plane smoother
(right-hand chart).
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the three directions are needed to achieve robustness (yz-plane smoothing sweep→ xz-plane
smoothing sweep→ xy-plane smoothing sweep). From here on, this approach will be re-
ferred to asalternating-plane smoothers(APS). Several versions of this method can be
developed depending on the sweep ordering (see [24] for a definition of the several or-
derings mentioned next): symmetric alternating-plane smoother (S-APS), lexicographic
alternating-plane smoother (L-APS), and tri-plane alternating-plane smoother (Tri-APS).

Plane-implicit smoothers combined with semi-coarsening.Instead of using standard
coarsening the coarse levels can be built by only coarsening along one direction. In or-
der to achieve robustness a plane-implicit solver perpendicular to the coarsened direction
is needed. Based on the coarsened direction, we will refer to these approaches as X, Y,
or Z semi-coarsening (XSC, YSC, ZSC). Depending on the order in which the planes are
swept we can construct the following methods: symmetric Z semi-coarsening (S-ZSC),
lexicographic Z semi-coarsening (L-ZSC), and tri-plane Z semi-coarsening (Tri-ZSC).

4. NUMERICAL EXPERIMENTS

Two different flows have been chosen to test the robustness of the multigrid algorithms
described: the driven cavity and the flow over a flat plate. These two cases have been widely
studied and used as benchmarking problems for CFD codes. Although the flow structures
are relatively simple, they exhibit some basic problems that prevent optimal multigrid
efficiencies from being achieved [2], namely strong recirculating flows and boundary layers.

Let R be theL2-norm of the average residual of the system of equations (11) defined as

R=
(∑((

Ru
i jk

)2+ (Rvi jk)2+ (Rwi jk)2+ (Rc
i jk

)2)
4 · Nx · Ny · Nz

) 1
2

, (16)

whereRu, Rv, Rw, Rc are the residuals of theu-, v-,w-momentum equations and continuity
equation respectively. The convergence criterion is based onR. When the fine-grid average
residual decreases to below 10−4 the calculations are terminated. This value is small enough
to assure that the algebraic error is below the discretization error. LetR0 and Rn denote
respectively the residual norms (as defined in Eq. (16)) before the iterative process and after
the convergence criterion is satisfied. So the average convergence factor is defined by

%̄ =
(

Rn

R0

) 1
n

. (17)

4.1. Flow in a Driven Cavity

The numerical solution, which has been widely used for testing numerical schemes, is that
of a flow confined in a rectangular domain with the upper wall moving at a constant speed.
The flow structure forlow to moderateReynolds numbers consists of a 3-D primary vortex
and two 3-D secondary vortexes at the bottom (see Fig. 5). The problem currently considered
consists of a cube of dimensionL with the top wall (z= L) moving at a velocityu.
The Reynolds number of the flow based in these quantities isRe= uL/ν. The boundary
conditions are of Dirichlet type for the velocities on the six faces of the computational
domain, and no boundary conditions were necessary for the pressure.
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FIG. 5. Grid used for the driven-cavity problem 32× 32× 32 (left-hand chart) and structure of the 3-D
primary vortex forRe= 103 (right-hand chart).

Simulations have been performed over three different grids, each one uniform and
stretched: 16× 16× 16, 32× 32× 32, and 64× 64× 64. The stretched grids were of
the formhk+1 = βhk, the stretching factorβ being equal to 1.1 in all cases (see Fig. 5,
left-hand chart). The driven-cavity problem is a rotating flow for which standard multigrid
schemes might have difficulties converging. These difficulties were not experienced in this
work since a moderate Reynolds number was considered. However, the simulations result
in a complex recirculating flow consisting of 3-D vortex structures as can be seen in Fig. 5.
The profiles at the center line of the cavity withRe= 3200 on a 32× 32× 32 stretched
grid are compared with the experiment of Prasad and Koseff [18] in Fig. 6.

As mentioned in Section 3.1, the convergence factor varies with the choice of the un-
derrelaxation factor for the velocity field. In Table I the underrelaxation factors used in
each simulation, as a function of the Reynolds number and grid size, are shown for the
different multigrid cycles under study: SCGS, tri-plane and symmetric APS, and tri-plane
and symmetric ZSC.

FIG. 6. 3-D cavity central plane profiles forRe= 3200 over a 32× 32× 32 stretched grid compared with
experiment [18].
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TABLE I

Underrelaxation Factors for the Driven-Cavity Simulation as a Function

of the Grid Size, Reynolds Number, and Multigrid Cycle

Grid

16× 16× 16 32× 32× 32 64× 64× 64

Re SCGS APS ZSC SCGS APS ZSC SCGS APS ZSC

102 0.6 0.6 0.5 0.5 0.6 0.6 0.5 0.6 0.5
103 0.4 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3

Figure 7 shows theL2-norm of the residual versus F(1,1)-cycles with a SCGS smoother
for several uniform grids and Reynolds numbers. The behavior of this smoother is quite
good for low Reynolds numbers (left-hand graph in Fig. 7 for Reynolds number 102), with
the residual norm being reduced by between four and five orders of magnitude in the first
five cycles. However, its efficiency decreases as the problem becomes more convective.
The residual norm cannot be reduced by four orders of magnitude in 10 cycles (right-hand
graph in Fig. 7 for Reynolds number 103). Furthermore, convergence could not be attained
over stretched grids with a cell-wise smoother such as SCGS.

Figure 8 shows theL2-norm of the residual versus F(1,1)-cycles with an alternating-plane
smoother combined with full coarsening (APS) for several grids and Reynolds numbers. The
S-APS approach (top graphs in Fig. 8) converges the residual to below 10−4 in five cycles
for both Reynolds numbers (102 and 103). However, the Tri-APS approach (bottom graphs
in Fig. 8) need eight cycles to reduce the residual norm to below 10−4 for Reynolds number
103. It is interesting to note that the cost per multigrid cycle with the symmetric ordering
is about twice as large as that with the tri-plane ordering. However, convergence factor per
work unit is better with the symmetric ordering of planes for low Reynolds numbers and it
is similar for both smoothers forRe= 103.

One of the drawbacks of the APS approach is its difficult implementation in a parallel
setting [13]. This problem can be easily overcome using a plane smoother combined with
semi-coarsening to ensure robustness. The block-implicit smoother used to converge the
driven-cavity simulation needs to be applied along the subcharacteristics of the discrete

FIG. 7. L2-norm of the residual versus F(1,1)-cycles with SCGS smoother for several uniform grids and
Reynolds numbers for the driven-cavity simulation.
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FIG. 8. L2-norm of the residual versus F(1,1)-cycles with an alternating-plane smoother combined with full
coarsening (APS) for several grids and Reynolds numbers with a symmetric order of planes (top graphs) and a
tri-plane ordering (low graphs) for the driven-cavity simulation.

operator for convection-dominated problems in order to obtain the higher efficiency. For
example, it was observed that thexz-plane sweeps seriously harm the smoothing, and so
the YSC approach exhibits a poor behavior.

Figure 9 shows theL2-norm of the residual versus F(1,1)-cycles with anxy-plane implicit
smoother combined with ZSC for several grids and Reynolds numbers. Although not shown,
the behavior exhibited by the XSC approach is similar to the one presented in Fig. 9 for
ZSC. The S-ZSC approach (top graphs in Fig. 9) converges the residuals to below 10−4

in five cycles for both Reynolds numbers (102 and 103). However, the Tri-ZSC approach
(bottom-charts in Fig. 9) is unable to reduce the residual norm below 10−4 in 10 cycles for
Reynolds number 103. As one might expect, the time per cycle is twice as fast for the tri-
plane ordering, although the convergence factor per work unit is better with the symmetric
ordering for all the cases.

Table II shows the average convergence factors obtained in the simulation of the driven-
cavity problem for several uniform and stretched grids, Reynolds numbers, and F(1,1)-
cycles. The convergence factor has been proved to be independent of the grid size and
stretching for the two robust approaches investigated; however, the convergence is not
Reynolds number–independent for the driven-cavity simulation. The algorithms exhibit the
same behavior for low Reynolds numbers as when solving the Poisson equation; that is,
the residual reduction per cycle is similar in both situations [8]. The convergence factor
improves on stretched grids (as in the fully elliptic case [8]), and as shown in Table II. It
also improves for finer grids. The convergence factor for the APS approach is lower than
for the SC approach and its cost per cycle is have as much because the F-cycle spends a
lot of time on coarser levels. However, its difficult and low-efficiency parallelization and
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FIG. 9. L2-norm of the average residual versus F(1,1)-cycles with anxy-plane implicit smoother combined
with ZSC for several grids and Reynolds numbers with a symmetric order of planes (top graphs) and a tri-plane
ordering (low graphs) for the driven-cavity simulation.

its difficulty in converging for Reynolds numbers higher than 103 might make the semi-
coarsening approach more attractive.

4.2. 3-D Flat-Plate Boundary Layer

We consider a square plate placed in the middle of the solution domain. In the west face
(x = 0) we define the inflow boundary with no angle of attack, and so the east face will
hold the outflow condition. On the plate a no-slip boundary condition is imposed, and a
symmetric condition is imposed elsewhere on the domain boundary (see left-hand chart in

TABLE II

Average Convergence Factors Obtained in the Simulation of the Driven-Cavity Problem

for Several Uniform (U) and Stretched (S) Grids, Reynolds Numbers, and Different F(1,1),

Cycles

Grid

32× 32× 32 64× 64× 64

Re S-APS S-ZSC Tri-APS Tri-ZSC S-APS S-ZSC Tri-APS Tri-ZSC

102 U 1.6× 10−3 0.07 0.14 0.24 3× 10−3 0.04 0.17 0.21
102 S 1.4× 10−3 0.04 0.08 0.23 7× 10−3 0.04 0.07 0.2
103 U 0.17 0.21 0.25 0.5 0.1 0.18 0.34 0.5
103 S 0.15 0.21 0.3 0.46 0.1 0.15 0.34 0.46
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FIG. 10. Schematic configuration of the flat-plate simulation (left-hand chart). 48× 48× 64 grid used for
the flat-plate simulation (right-hand chart).

Fig. 10). In this case, the pressure is not specified at the boundary. As the velocity gradient
normal to the wall is very high only in the boundary layer, the thin-layer approximation
which only retains those terms can be adopted. However, in the following simulations the
original for (1) of the Navier–Stokes equations is solved.

In order to capture the viscous effects, the grid is highly stretched near the plate (see
right-hand chart in Fig. 10). Moreover, the grid is refined near the plate edges to reduce the
large discretization errors in those zones, as advocated by Thomaset al.[21]. To ensure that
a sufficient number of grid points will lie inside the boundary layer, the space for a uniform
mesh would impose too high a demand on the computation. For example, approximating the
boundary-layer thickness withδ ∼ 1/

√
Refor Re= 104 we haveδ ∼ 0.01, which implies

at least 102 grid points in a uniform grid, which cannot be considered due to memory
limitations in a 3-D simulation. Thus for this model problem, no regular grids will be
considered. The grids are stretched in thez-direction using a geometric factorhk = βhk−1

with β = 1.3 for the 24× 24× 32 grid andβ = 1.1 for the 48× 48× 64 grid.
The solution is verified by comparing theu-velocity in the middle of the plate with the

Blasius analytical solution for a 2-D plate (left-hand chart in Fig. 11). The little discrepancy
near the layer edge is due to the highly stretched grid used in this simulation.

FIG. 11. Simulation comparison with Blasius theory at the middle of the plate withRe= 104 (left-hand
chart). Pressure contour lines forRe= 104 andz= 0 (right-hand chart).
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TABLE III

Underrelaxation Factors for the Flat-Plate Simulation as a Function

of the Grid Size, Reynolds Number, and Multigrid Cycle

Grid

24× 24× 32 48× 48× 64

Re L-ZSC Tri-ZSC L-ZSC Tri-ZSC

102 0.8 0.8 0.8 0.8
104 0.6 0.4 0.6 0.4

The multigrid cycle employed to solve each level of the FMG is a F(2,1)-cycle. The
underrelaxation factors used in the simulations are shown in Table III. Depending on the
problem, some plane-sweep directions may deteriorate the smoothing. The best smoothing
rate was achieved with a combination ofxy-plane relaxation and ZSC. We do not include
results of the alternating-plane approach or other semi-coarsening directions because of
their poor behavior.

Figure 12 shows theL2-norm of the residual versus F(2,1)-cycles with lexicographic and
tri-planexy-plane implicit smoothers combined with ZSC for several grids and Reynolds
numbers. The residual norm is reduced by nearly five orders of magnitude in the first five
cycles in all cases (note that the reduction is of four orders of magnitude in the first two
cycles for the 48× 48× 64 grid). In fact, the full multigrid algorithm converges the solution

FIG. 12. L2-norm of the residual versus F(2,1)-cycles with lexicographic (top graphs) and tri-plane (bottom
graphs)xy-plane implicit smoothers combined with ZSC for several grids and Reynolds numbers.
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TABLE IV

Average Convergence Factors Obtained in the Simulation of the

Flat-Plate Problem for Several Stretched Grids, Reynolds Numbers,

and F(2,1)-Cycles

Grid

24× 24× 32 48× 48× 64

Re Tri-ZSC L-ZSC Tri-ZSC L-ZSC

102 0.07 0.04 0.09 0.02
104 0.13 0.09 0.08 0.03

to below the truncation error with one F(2,1)-cycle per level. The asymptotic convergence
rate is equal to 0.19, which is close to that obtained for the Poisson equation with the
semi-coarsened approach [13].

Table IV shows the average convergence factors obtained in the simulation of the flat-
plate problem for different F(2,1)-cycles and several stretched grids and Reynolds numbers.
Although not included in this report, experiments with Reynolds numbers up to 106 were
performed. Convergence rates, independent of the Reynolds number, the grid size, and
the stretching factor, were achieved for the resolution of the boundary layer over a flat
plate. Since the flow is aligned with the grid, the results obtained with the lexicographic
and tri-plane smoothers are very similar. Furthermore the time per multigrid cycle is very
similar for both smoothers (similar convergence per work unit). The parallel possibilities
of tri-plane ordering make this approach more attractive. Results obtained for first-order
accuracy (without QUICK correction) are even better. The residual norm is reduced by
nearly five orders of magnitude in the first three cycles and the asymptotic convergence rate
is equal to 0.1.

5. CONCLUSIONS AND FUTURE WORK

The robustness of two popular FAS multigrid algorithms (alternating-plane smoothers
combined with full coarsening and plane smoothers combined with semi-coarsening) has
been investigated through the solution of the incompressible 3-D Navier–Stokes equations.
Convergence results have been obtained for two common benchmarks in CFD: the driven
cavity and the flow over a flat plate. Robustness has been defined as the ability of the multigrid
method to solve the model problem with a convergence rate per work unit independent of
grid size, stretching factor, and Reynolds number (TMC).

The convergence factor has been shown to be independent of the grid size and stretching
for the two robust approaches investigated in the driven-cavity simulation. Moreover, the
convergence rate improves on stretched grids and for finer grids. The convergence is not
Reynolds number independent and in fact the alternating-plane approach fails to converge for
Reynolds numbers higher than 103. However, for lower Reynolds numbers, its convergence
and operation count per cycle is better than that exhibited by the semi-coarsening approach.
The difficult parallel implementation of the alternating-plane smoother and its difficulties
in converging for high Reynolds numbers might make the semi-coarsening approach with
tri-plane smooth ordering more attractive.
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The combination ofxy-plane smoothing and ZSC has been found to be the best choice
for the flat-plate simulation. Its convergence rate is independent of grid size, stretching, and
Reynolds number, and the tri-plane variant exhibits similar properties to the lexicographic
ordering and allows the parallel implementation of the algorithm. The alternating-plane
approach fails to converge in this case.
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