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Anisotropies occur naturally in computational fluid dynamics where the simula-
tion of small-scale physical phenomena, such as boundary layers at high Reynolds
numbers, causes the grid to be highly stretched, leading to a slowdown in conver-
gence of multigrid methods. Several approaches aimed at making multigrid a robust
solver have been proposed and analyzed in the literature using the scalar diffusion
equation. However, they have rarely been applied to solving more complicated mod-
els, such as the incompressible Navier—Stokes equations. This paper contains the
first published numerical results of the behavior of two popular robust multigrid
approaches (alternating-plane smoothers combined with standard coarsening and
plane-implicit smoothers combined with semi-coarsening) for solving the 3-D in-
compressible Navier—Stokes equations in the simulation of the driven-cavity and a
boundary layer over a flat plate on a stretched grid. Grid size, grid stretching, and
Reynolds number are the factors considered in evaluating the robustness of the multi-
grid methods. Both approaches yield large increases in convergence rates over cell-
implicit smoothers on stretched grids. The combination of plane-implicit smoothers
and semi-coarsening was found to be fully robust in the flat-plate simulation up
to Reynolds numbers £Gnd the best alternative in the driven-cavity simulation
for Reynolds numbers above ®l0rhe alternating-plane approach exhibits a better
behavior for lower Reynolds numbers (below?)Lih the driven-cavity simulation.
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1. INTRODUCTION

Multigrid techniques are generally accepted as fast and efficient methods for solving m
types of partial differential equations, and particularly elliptic problems whose discretiz
tion results in a K-matrix [24]. For this kind of problem, basic point-wise iterative method
such as Gauss—Seidel or damped Jacobi, are good smoothers, and multigrid methods €
an optimal complexity (work is linearly proportional to the number of unknowns), optim:
memory requirements, and good parallel efficiency and scalability in parallel implemen
tions [9].

However, the efficiency of the multigrid methods degenerates dramatically in presenc
anisotropies. Itis well known that in the resolution of the Poisson equation the converge
factor of the multigrid method tends to one as the anisotropies are increased [1]. Typic
these anisotropies might occur when the coefficients of the discrete operator vary throug
the domain or when stretched grids are used. This anisotropic condition occurs natul
in the field of computational fluid dynamics (CFD) where the simulation of small-sca
physical phenomena, such as boundary layers at high Reynolds numbers, causes th
to be highly stretched, leading to a slowdown in convergence.

In some situations, when the source of the anisotropy is known beforehand, a bilc
implicit smoother can be used to improve the efficiency of the multigrid algorithm. Us
ally this is done by applying an implicit solver in the directions of strong coupling, &
states Brandt's fundamental block relaxation rule [1]. This technique is common pr
tice in CFD. Thomas, Diskin, and Brandt [21] have demonstrated the efficiency of t
distributive smoothing scheme with line solvers applied to high Reynolds number sin
lations when the grid stretching is normal to the body. The benefits of plane relaxat
are shown by Oosterlee in [16] for simulations of the 3-D incompressible Navier—Stol
equations over grids with nonunitary aspect ratios. Also, a combination of line-impli
techniques and semi-coarsening has been successfully used by Mavriplis in [10, 11
solve high Reynolds number 2-D and 3-D viscous flows over anisotropic unstructu
meshes.

However, in a general situation the nature of the anisotropy is not known beforeha
so there is no way of knowing which variables are coupled. Moreover, if the problem
solved on a stretched grid or the equation coefficients differ from each other throughout
domain (computational and physical anisotropy respectively) the values of the coefficie
and their relative magnitudes vary for different parts of the computational domain. In st
cases the multigrid technigues based on point- or plane-wise smoothers combined
full coarsening fail to smooth error components with the consequent deterioration of
multigrid convergence factor.

Several approaches aimed at making multigrid a robust solver have been proposed il
literature. One popular approachis to use standard coarsening combined with an alterna
directionimplicitsmoother[8, 12, 20]. This solution consists of exploring all the possibilitie
in order to develop a robust smoother, i.e., uses alternating-line relaxation in 2-D «
alternating-plane relaxation in 3-D. Another approach to dealing with anisotropic proble
is to combine an implicit smoother with an appropriate semi-coarsening procedure [4, :
Thisis rather popular in the literature and overcomes some parallelization problems that
be found in the alternating-plane smoothers [13]. For example, a simple way to avoid us
an alternating-plane smoother is to use semi-coarsening in one direction and relaxatior
fixed plane (e.g., combing-plane relaxation witlZ semi-coarsening). Other intermediate
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alternatives that combine plane, line, or point relaxations with partial and full coarseni
have also been presented in multigrid literature [14, 15].

Some of these robust multigrid approaches have also been tested for the efficient
olution of the 2-D Navier—Stokes equations. The alternating-direction line smoother t
been investigated for the solution of the incompressible 2-D Navier—Stokes equation:
[22, 17]. However, to the authors’ knowledge, the robust multigrid algorithms have ne
been applied to the resolution of the 3-D incompressible Navier—Stokes equations. The
of this work is to present a thorough study of the application of two common robust mul
grid algorithms (alternating-plane smoothers combined with standard coarsening and p
smoothers combined with semi-coarsening) to the resolution of the 3-D Navier-Stol
equations on single-block structured grids.

The robustness of a smoother is defined as its ability to efficiently solve a wide range
problems. In this sense the definition of robustness is qualitative and has to be defi
more precisely by setting up a set of suitable test problems. Traditionally, the abo
mentioned approaches have shown to be robust smoothers for the anisotropic diffu
equation. In the present context we will characterize the multigrid algorithms as rob
if the solution of the governing system of equations can be attained in a fixed amoun
work units (computational time to discretize the partial differential equations in the fine
level) independent of the grid size, grid-stretching factor, and Reynolds number. Thic
equivalent to saying that the convergence factor of the multigrid algorithm is independ
of the grid size, stretching, and Reynolds number. We will also refer to this property
textbook multigrid convergend@MC). We believe that the achievement of a textbook
multigrid convergence rate through increasing the work and memory requirements per
cle is the first step to achievingxtbook multigrid efficienc¢TME). The TME, defined
by Brandt in [1], fixes the computational work to solve the problem to 10 or fewer wor
units.

This paper is organized as follows: The numerical scheme used by our simulation:
described in Section 2. Details of the implementation of the multigrid algorithm used
this work are presented in Section 3. Numerical results are obtained in Section 4 for |
common benchmarks in CFD: the driven cavity and the flow over a flat plate. In this secti
the robustness of the alternating-plane smoothers combined with full coarsening and p
smoothers combined with semi-coarsening will be investigated. The paper ends with s
conclusions in Section 5.

2. THE PRIMITIVE EQUATIONS

The dimensionless, steady-state, incompressible Navier—Stokes equations in the ab:s
of body forces may be written as

1
u-vu= -V — AU,
( ) p+Re

1)
V.-u=0,

whereu € %3 = (u, v, w) is the nondimensional velocity field arlis the dimensionless
pressureReis the Reynolds number definedRe = UL /v, whereU, is a characteristic
velocity, L's a characteristic length, andis the kinematic viscosity.
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FIG. 1. Placement of the unknowns in the CV (left-hand chart). Control volume whera-thementum
equation is integrated (right-hand chart).

2.1. Discretization

In order to obtain the discrete expression of the nonlinear system, the solution don
is divided into a finite set of control volumes (CVs). In the present work we will use &
orthogonally structured grid where each control volume will be hexahedron, as in the I
hand chart in Fig. 1. The variables are stored in a staggered way; i.e., the velocities
evaluated in the faces of the CV and the pressure field at the center of each CV. Stagc
discretization has the benefits of stability properties and leads to a natural discrete fort
the continuity equation [5, 7].

The procedure carried out to discretize themomentum equation will now be described
with some detail. In a staggered arrangement of unknowns each equation is integrate
its own CV. Theu-momentum CV is built surrounding thg variable, displaced from the
CV of the continuity equation, as in the right-hand chart in Fig. 1. In the following, we wi
refer to the dimensions of this C& asA X, AY, AZ. So we can write the-momentum
equation for a generic nodgj in its integral form in Cartesian coordinates as

ap 1
-vudV=—- [ —dV+ —=— | AudV. 2
/Qu ud /an +Re/g ud 2)

The convective term in the momentum equation using the Gauss theorem is rewritte

/qudV:/ u(u-n)dS:Z/ uu-n)ds k=ew,sntb (3
Q 92 o Josu

where the indexes, w, ... stand for the standard cardinal notation (see [5]).

The last integral in Eq. (3) is easily approximated applying the midpoint rule. Providir
the value of the function in the middle of the face results in the leading truncation te
beingO(h?). Thus, to preserve this accuracy the interpolation of the fluxes at the CV fac
has to be at least of second order. This is assured by using a parabolic interpolation fo
velocities and linear interpolation for the mass fluxes. Moreover, for nonuniform grids t
fluxes are not computed at the middle of the CV. So, assuming a stretched geometric
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of the formhy, 1 = Bhy with 8 as the grid-stretching factor, the integral approximation will
have a truncation err@((8 — 1)h) + O(h?). Taking these considerations into account the
integral in Eq. (3) is written as

Z/ u(u-n)dS~ kauk, k=e w,s,n,t,b, (4)
PR k

where the mass fluxes, have been defined g, u-ndSand can be evaluated with the
expressions

Uijk + Ui_1; Uijk + Uigaj
m, = %AYAZ, Me = MAYAZ,
me = Vijk AX; + vi-1jk |+1AZ, m, = Vij+1kAX + vi-1j+1k |+1AZ,
2 2
my = wijk AX; + ZifljkAXHl AY, m = Wijk+1AX% + ZiflijAle AY.

with AXi 41 = Xi1jk — Xijk and Ax = Xjx — Xi—1jk (See Fig. 1). The velocity at the CV
face is interpolated by fitting a parabola to the values of the velocity at three consecu
nodes: the two nodes located on either side of the surface of interest plus the adjacent
in the upstream direction. In this work we will use the QUICK formulation of Hayas
et al.[6], which can be seen as a defect-correction scheme based on the upwind differe
approximation:

U — Uijk + S (U-n)e >0, u - Uijk + S} (u-nj, >0,
¢ Uik + S (U-N)e <0, ’ Ui—1jk + S, (U-n), <0,
= Uijk + S (U-n)y >0, e — Ui + & (U-n)s >0,
" Ujtk + S, (U-n), <O, ° Uj—k + S (U-n)s <0,

{uuk+5r(U-n)t>0, {ui,-k+sg(u-n)b>o,
Utz Ub=

Uijk+1+§ U-n) <0, Uijk-1+ S U-n), <O.

The defect-correction source terf8 and S~ are calculated within the multigrid cycle
using the current approximation whenever a discrete evaluation of the residual is nee
So the algebraic coefficients for the convection terms can be written as

LS =min(0, mg), LS =min(0, m,), L{ = min(0, mp),
LS =min(0, ms), L{=min(0, m;), Lg = min(0, mp), (5)

LS =—(Le+ L+ LS+ LE+LE+L5).

The expression for_% has been obtained using the continuity equation over the2CV
which in its discrete form is

Me + My, + My + Mg+ m; + my = 0.
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Using the Gauss theorem in the diffusive part of the momentum equation (3) and
midpoint rule to approximate the resulting surface integral we get

favenes~[(5),- () ] »s
&), -G R) () s ©

The derivatives in the above expression are evaluated with a central difference sche

o_ _ AYAZ o AYAZ o« 2AXAZ
¢ ReXiqijk — Xijk) " ReMijk —Xi—ijk)” " Re(Yijik — Yij—k)

Lo_ _ 28XAZ o 2AYAX a_  2AYAX @
ST Reyijix—Yijk) ' ReZjkii—zjk1) °  ReZjkiz— Zijk)

Lo =—(L+ Lo+ Li+Lp+Ly+1LY).

Finally, treating the pressure as a surface force the volume integral in Eq. (2) can
expressed as a surface integral, as in Eg. (8). Again this is evaluated using the midpoint
approximation,

Q2
In this case no interpolation is needed for the pressure because of the staggered arr
ments of unknowns, as can be seen in the right-hand chart in Fig. 1. Now, we can write
algebraic equation for a generic velocity nadg as

Ly Ui-1jk + LeUitajk + LsUij—ak + LpUij ax + LpUijk-1

+ L{'Uijks1 + LUk + LEpijk + LY pi-1jk = Fijk. )

The coefficients multiplying the velocity are obtained as the sum of the diffusive and
convective parts, (i.eL! = LF+ L with | = e, w, n, s, b, t) and those multiplying the
pressure are obtained directly from Eq. (8). An equivalent expression may be obtai
for the v- and w-momentum equations and can be derived by symmetry from the abc
equations.

The continuity equation can be easily approximated because all velocities are knc
within the surface of the volume:

/ V-udV A (Ue — Up)AYAZ + (v — v) AXAZ + (wy — wp) AXAY.  (10)
Q

The above expressions are valid for CVs inside the domain and must be modifiec
order to satisfy the conditions. The discretization of the boundary conditions is perforn
by mirroring the cells adjacent to the boundary. The new variables outside the solut
domain are extrapolated invoking the condition at each boundary. With these modificati
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of the algebraic equations the system of nonlinear equations to be solved can be prese
in a matrix form as

Lh o o L';)
h h

o L" o L"
h h

0 o Lh Lh

Lh Lh Lh 0

c

: (11)

€

T & < C
—h Th  —h =k
<

where the source ternfg, f,, f,, andf, in the right-hand side of the system include the
discretization of the boundary conditions and the contribution of the QUICK scheme.

3. THE MULTIGRID METHOD

A sequence of grid® (I = 1, ..., M) is used in the full multigrid (FMG) scheme [1]
whereQ! is the finest target grid and the rest of the grids are obtained by applying ce
centered coarsening. The computations are initiated in the coarsest grid; once the dis
system is solved the solution is transferred to the next finer level. The prolongated solu
is then used as an initial guess for the multigrid method in that level. This procedure
repeated until the finest grid is reached. The goal of this algorithm is to reduce the algeb
error to below the discretization error in just one FMG cycle.

Because of the nonlinearity of the problem, a full approximation scheme (FAS) [1]
used to solve each level in the FMG cycle. The following iterative algorithm represent:
FAS V(y1, y2)-cycle to solve the nonlinear systdma = f on Q! wherey; andy» represent
the number of pre-smoothing and post-smoothing iterations respectively.

ALGORITHM 1 (FAS V(y1, y2)).

1. Pre-smoothing Apply y: iterations of the smoothing method tdut = f*
2. FOR|=1TO L Restriction Part
3. Compute the residual~! = f'-1 — '-1y'-1
4. Restriction of the residual = R_,r'~!
5.  Restriction of the solutionl,y = I ,u'~*
6. Compute the metrics of levell (u old)
7. Calculate the new right-hand sidé=r' + L'ul,,
8. Pre-smoothing Apply y iterations of the smoothing method tbu' = f!
9. FORI=L — 1TO 1 Prolongation Part
10.  Correction of the current approximatioh= u' + P'*1(u'+1 — ulth
11. Compute the metrics of level! (u")
12. Post-smoothing Apply y» iterations of the smoothing method itbu' =

In steps 6 and 11 the metrics of the system are computed over the current grid, wt
includes the computation of the correction terms from the QUICK scheme and also
linearization of the system based on the actual solution. Note that the metrics of the sys
are also updated within the smoothing process in steps 8 and 12 as explained in Sectior
The operator® _, andP ™ in steps 3 and 8 are used to transfer data (solution and residua
between two different grids: from the coarser level to the current (prolongation) or from t
finer to the current level (restriction), respectively.

These transfer operators are dictated by the staggered arrangement of unknowns ar
coarsening procedure used. The prolongation and restriction operators are volume-weig
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FIG.2. Scheme of an F-cycle {,y,) wherey, represents the number of iterations of the smoother performe:
to solve the coarsest level.

trilinear interpolation in the case of standard coarsening. For the semi-coarsening appr
the velocity component parallel to the coarsened direction is restricted using injection;
other variables are restricted using volume-weighted linear interpolation in lines paralle
the coarsened direction. The prolongation operator in this case is volume-weighted lir
interpolation. Note that for semi-coarsening the velocity component parallel to the coarse
direction is treated in a vertex-centered way, while the rest of the variables are transfe
as cell centered.

In the following experiments F-cycles will be used (see Fig. 2) to solve each level
the FMG algorithm. F-cycles have been reported to be more efficient for rotating proble
[17] at the expense of their parallel properties [10]. The coarsest level is fixed as coars
possible, and it will be solved with five iterations of the smoothing process.

3.1. Smoothing Process

One of the mostimportant parts of a multigrid algorithm is the smoothing process. Sev
smoothers for the Navier—Stokes equations problem were studied in the literature. Tt
approaches fall into two categories: 1. coupled smoothing [23, 16, 22] where the momen
and continuity equations are satisfied simultaneously), and 2. distributive smoothing [21
(where the momentum equations are solved in a first step, and then the velocities and |
sures are corrected in order to satisfy the continuity equation). In situations where the
efficients vary through the CV (e.g., stretched grids, strong recirculating floyspupled
smoothing has advantages over the distributive approach because the linearized mome
and continuity equations are solved simultaneously [23, 7]. However, the computatic
cost of the coupled method is much higher than that of the distributive. Note that a (sm
matrix has to be inverted in each CV. Moreover, every velocity component is updated
sentially twice since it updates all the variables involved in a CV simultaneously (see
right-hand chart in Fig. 1).

In particular, we have chosen a cell-implicit symmetric coupled Gauss-Seidel (SCC
method as the base smoother because of its higher stability and rapid convergence.
smoother was introduced by Vanka [23] and also considered by Thompson and Tenz
[22]. Considering the CVjk, the momentum equations for the six cell faces together wit
the continuity equation for the CV can be expressed as

Uy o TH. Uo .. — fU
E Lim, jnkepUiem j+nkep + Lo Bijk + Lo, Picijk = i,
[m|+n|+[pl<1

Ue . . Uepy .. u ... — fu
E i+m, j+nk+pUi+m j+nk+p T |—pie Pi+1jk + Lpil Pijk = Ti1jk
[ml+[n|+|p|<1
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v, v, Uy . — fv
Z LiZm, j+nicpliem j+nkrp + L Pijk + Ll Pij-1c = Tiji,

[ml+[n|+|pl<1
V) U U v
E Litm j+nkepliemj+nkep + LY Pijsw + LY Pijk = fijin.  (12)
[m|+[n|+[p|<1
Wo . . Wh .. Wh - — fw
E itm, ke pWidtm j4nktp + Lo Pijk + L2 Pijk-1 = fiji,
[m[+[n|+|p|<1
Wt R ) w - w - —_ w
E LitmjenkepWitmj+nkep + L Bijkrr + Lo, Pijk = Fijigas
[m|+|n[+|pl<1

(Uiy1jk — Uijk) . (Vij+ik — Vijk) n (Wijk+1 — Wijk) ¢m
AX Ay AZ 1k

This set of equations for the CV is linearized by computing the mass fluXes?, with
the current values of the velocity field. Defining the residudl$®* and the corrections
Au = u™! — u", etc. the system (12) can be arranged in a block structure as follows:

o0 0 0 0 0 L%\ /Ay M
0 Ly O 0 0 0 Ly, AUi11jk M
0 0 L% 0 0 0 L% ||Auvg Y
0 0 0 it O 0 Lp, Avijy | = | 1
0 0 0 0 L% 0 L Awijk ik
0 0 0 0 0 Lifky Lb, Awijk+1 M
R T AR

(13)

A more implicit version of Egs. (13) that includes off-diagonal elements in the first s
rows is also possible; this is equivalent to considering implicitly in the Egs. (12) all tt
unknowns involved in the CV. However, the convergence factor is similar and the systen
more expensive to solve than the system of Egs. (13) [22]. The system (13) is easily sol
by Gaussian elimination and then the velocity components and the pressure of the CV
updated using underrelaxation:

U™ = u" 4+ wyAu,

14
n+l1 _ .n ( )
P = p" + wpAp.

The underrelaxation technique has the effect of adding a pseudo—time dependent
in the equations. In the following simulations the underrelaxation factor for the pressu
wp, has been fixed to 1.0, while the underrelaxation factor for the velocitig$s strongly
problem dependent and has to be set empirically. The optimum valugisfa function of
the Reynolds number and the grid size and also depends on whether the convection scl
is first- (upwind) or second-order (QUICK) accurate. This is a drawback of this smooth
since a simulation has to be tuned in order to find out the best underrelaxation factor.
Fig. 3 shows, the efficiency of the method can be dramatically worsened with a bad chc
of wy.
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FIG. 3. Number of fine-grid cycles required to converge a driven-cavity simulation Rith= 500 on a
16 x 16 x 16 uniform grid as a function of the relaxation parameigr

3.2. Plane-Implicit Smoothers

Implicit solvers have been widely considered in previous work as a cure to eliminati
all the high-frequency errors in the presence of strong anisotropies. Taking advantag
the relatively small 1-D problem size, these implicit-line smoothers are based on an e
solver. However, the 3-D counterpart does not present this possibility, since the 2-D prob
size is no longer small enough for us to consider using an exact solver. Furthermore ad
exact solver for the planes is not needed, as has been shown in [8] for the 3-D Pois
equation and in [16] for the incompressible Navier—Stokes equations. This considera
drastically reduces the computational cost of the overall algorithm compared with tha
an exact plane solver. However, this inexact solution of the planes does not decreas:
convergence of the multigrid algorithm [16, 8]; in other words, solving the plane beyo
a precision threshold does not improve the convergence rate. Note that the plane-imy
smoother has to damp high oscillating error components in the plane rather than sol
2-D problem exactly.

In the present work, the planes will be approximately solved with a 2-D multigrid alg
rithm consisting of one FAS F(1,1)-cycle. The same kind of anisotropies found in the 3
problem may appear in the 2-D system. Thus a robust multigrid algorithm is, again, cc
pletely necessary. For the 2-D system the same robust algorithms will be considered,
an alternating-line smoother combined with full coarsening and a line-implicit smoott
combined with semi-coarsening. In the following simulations, the 2-D algorithm used
solve the planes will be the 3-D counterpart, i.e., an alternating-line smoother when us
an alternating-plane smoother and a semi-coarsened line smoother when using a ¢
coarsened plane smoother. One 1-D FAS F(1, 1)-cycle will be applied to solve the lines,
smoother in this case being SCGS as described in the previous section.

The coupled philosophy of the SCGS will be applied in the line and plane solvers. T
plane smoother relaxes simultaneously the momentum and continuity equations of the |
included in the plane, and hence all velocity components and pressures contained withil
plane will be updated at the same time. Let us consider for examptg plane, defining
the vectorXy that accommodates the variables for a whole plane of cells:

:
X = U, v,w,Ww", p), U=Uj, V=ujk, W=uwjk, W"=wijki1,

P = pijk, Vi, j €[0,n], k= const (14)
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The equation system for the plane in terms of residuals and corrections is
Lk AXk = Rq, (15)

where Rq = fx — Ly Xk is the residual of th&th plane andA Xy = X,’(‘Jrl — Xy is the
increment of the solution. The system of equations (15) is built into the smoothing proc
as follows. When solving for thieth plane, the metrics in that plane are linearized using th
current solution. Also the second-order correction for the convective term is recomput
With these new metrics the residuR] for thekth plane is calculated.

Defining a specific ordering of the planes, we can easily construct many types of pl:
smoothers. It is important to note that with the second-order operator, the right-hand ¢
of the system (15) depends on the values of the plaket 1 and/ork & 2, depending on
the direction of the velocity. Thus a parallel implementation cannot be constructed ba
on aregular zebra ordering (left-hand chart in Fig. 4). In order to avoid these dependen
a tri-plane smoother could be applied [17] (right-hand chart in Fig. 4).

Grid stretching is commonly used in grid generation to pack points into regions wi
large solution gradients while avoiding an excess of points in more benign regions (
example in the simulation of viscous flows at high Reynolds numbers to resolve boul
ary layers). The convergence of multigrid based on point smoothing and full coarst
ing deteriorates dramatically when highly stretched grids are used. In some situatic
when the direction of the anisotropies is known beforehand, the multigrid converger
can be improved using an implicit smoother in the direction normal to the stretchir
However, if the stretched grid generates aspect ratios whose relative magnitudes van
different parts of the computational domain, the multigrid techniques based on pla
wise smoothers combined with full coarsening fail to smooth error components. Ott
remedies should be used to achieve a robust solver. The two most common alterna
are:

Robust multigrid smoothing process with standard coarserifrthe coarser grids are
built by doubling the mesh size in all coordinate directions, sweeps of the planes

O X | O X104 X ool Xxjotlo| X
O X|O | X]|O]| X o|o} X oD} X
(o] X|Oo|X]0O0]| X ool X o |0} X
o] X O| X|O]| X o (0| X o (0| X
o] X100 X]|]0|X o | 0| X o | O} X
(o] X1Oo|X]|]0O0]| X o (0| X o | 0| X
; No dspendsncissé
Dependencies : i
O First Sweep O First Sweep

X Second Sweep 0O Second Sweep

X Third Sweep

FIG.4. Standard zebraordering of planes (left-hand chart). Planes relaxed concurrently in atri-plane smoc
(right-hand chart).
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the three directions are needed to achieve robustgegigne smoothing sweep xz-plane
smoothing sweep> xy-plane smoothing sweep). From here on, this approach will be r
ferred to asalternating-plane smoothef@\PS). Several versions of this method can be
developed depending on the sweep ordering (see [24] for a definition of the several
derings mentioned next): symmetric alternating-plane smoother (S-APS), lexicogray
alternating-plane smoother (L-APS), and tri-plane alternating-plane smoother (Tri-APS
Plane-implicit smoothers combined with semi-coarseningtead of using standard
coarsening the coarse levels can be built by only coarsening along one direction. In
der to achieve robustness a plane-implicit solver perpendicular to the coarsened dire
is needed. Based on the coarsened direction, we will refer to these approaches as
or Z semi-coarsening (XSC, YSC, ZSC). Depending on the order in which the planes
swept we can construct the following methods: symmetric Z semi-coarsening (S-ZS
lexicographic Z semi-coarsening (L-ZSC), and tri-plane Z semi-coarsening (Tri-ZSC).

4. NUMERICAL EXPERIMENTS

Two different flows have been chosen to test the robustness of the multigrid algorith
described: the driven cavity and the flow over a flat plate. These two cases have been wi
studied and used as benchmarking problems for CFD codes. Although the flow struct
are relatively simple, they exhibit some basic problems that prevent optimal multig
efficiencies from being achieved [2], namely strong recirculating flows and boundary laye

Let R be theL ,-norm of the average residual of the system of equations (11) defined

(16)

R (Z (( 'LJ!k)2+ (Rﬁk)z"' (Ri]fk)z + %k)2)>% 7

4'Nx'Ny'Nz

whereR"Y, R, R, R® are the residuals of the, v-, w-momentum equations and continuity
equation respectively. The convergence criterion is basd®l ¥vhen the fine-grid average
residual decreases to below f@he calculations are terminated. This value is small enoug
to assure that the algebraic error is below the discretization erroiRj.ahd R, denote
respectively the residual norms (as defined in Eq. (16)) before the iterative process and
the convergence criterion is satisfied. So the average convergence factor is defined by

4.1. Flow in a Driven Cavity

The numerical solution, which has been widely used for testing numerical schemes, is
of a flow confined in a rectangular domain with the upper wall moving at a constant spe
The flow structure folow to moderatdReynolds numbers consists of a 3-D primary vortex
and two 3-D secondary vortexes at the bottom (see Fig. 5). The problem currently consid
consists of a cube of dimensidn with the top wall ¢ = L) moving at a velocityu.
The Reynolds number of the flow based in these quantiti®eis- uL/v. The boundary
conditions are of Dirichlet type for the velocities on the six faces of the computatior
domain, and no boundary conditions were necessary for the pressure.
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FIG. 5. Grid used for the driven-cavity problem 3232 x 32 (left-hand chart) and structure of the 3-D
primary vortex forRe= 10 (right-hand chart).

Simulations have been performed over three different grids, each one uniform ¢
stretched: 16« 16 x 16, 32x 32 x 32, and 64x 64 x 64. The stretched grids were of
the formhy 1 = Bhy, the stretching factop being equal to 1.1 in all cases (see Fig. 5,
left-hand chart). The driven-cavity problem is a rotating flow for which standard multigri
schemes might have difficulties converging. These difficulties were not experienced in
work since a moderate Reynolds number was considered. However, the simulations re
in a complex recirculating flow consisting of 3-D vortex structures as can be seen in Fig
The profiles at the center line of the cavity witle= 3200 on a 3% 32 x 32 stretched
grid are compared with the experiment of Prasad and Koseff [18] in Fig. 6.

As mentioned in Section 3.1, the convergence factor varies with the choice of the |
derrelaxation factor for the velocity field. In Table | the underrelaxation factors used
each simulation, as a function of the Reynolds number and grid size, are shown for
different multigrid cycles under study: SCGS, tri-plane and symmetric APS, and tri-pla
and symmetric ZSC.

%L
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FIG. 6. 3-D cavity central plane profiles fdRe= 3200 over a 3% 32 x 32 stretched grid compared with
experiment [18].
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TABLE |
Underrelaxation Factors for the Driven-Cavity Simulation as a Function
of the Grid Size, Reynolds Number, and Multigrid Cycle

Grid

16 x 16 x 16 32x 32 x 32 64x 64 x 64

Re SCGS APS ZSC SCGS APS 7ZSC SCGS APS ZSC

10 0.6 0.6 0.5 0.5 0.6 0.6 0.5 0.6 0.5
10° 0.4 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3

Figure 7 shows thé& ,-norm of the residual versus F(1,1)-cycles with a SCGS smooth
for several uniform grids and Reynolds numbers. The behavior of this smoother is q
good for low Reynolds numbers (left-hand graph in Fig. 7 for Reynolds numBgnith
the residual norm being reduced by between four and five orders of magnitude in the
five cycles. However, its efficiency decreases as the problem becomes more convec
The residual norm cannot be reduced by four orders of magnitude in 10 cycles (right-h
graph in Fig. 7 for Reynolds number)0Furthermore, convergence could not be attaine:
over stretched grids with a cell-wise smoother such as SCGS.

Figure 8 shows the,-norm of the residual versus F(1,1)-cycles with an alternating-plar
smoother combined with full coarsening (APS) for several grids and Reynolds numbers.’
S-APS approach (top graphs in Fig. 8) converges the residual to beldwirifive cycles
for both Reynolds numbers (@nd 16&). However, the Tri-APS approach (bottom graphs
in Fig. 8) need eight cycles to reduce the residual norm to below fbd Reynolds number
10°. It is interesting to note that the cost per multigrid cycle with the symmetric orderir
is about twice as large as that with the tri-plane ordering. However, convergence factor
work unit is better with the symmetric ordering of planes for low Reynolds numbers anc
is similar for both smoothers fdRe= 1C°.

One of the drawbacks of the APS approach is its difficult implementation in a paral
setting [13]. This problem can be easily overcome using a plane smoother combined \
semi-coarsening to ensure robustness. The block-implicit smoother used to converge
driven-cavity simulation needs to be applied along the subcharacteristics of the disc

Symmetric SCGS Re=1000 —e—

P [

16x16x16 32x32x32 64x%64x64 16x16x16 32x32x32 64x64%x64

Symmetric SCGS Re=100 —s—

log([IRI)
tog(f|RI})
N

0 5 10 “o 10 20
Cycles Cycles

FIG. 7. L,-norm of the residual versus F(1,1)-cycles with SCGS smoother for several uniform grids a
Reynolds numbers for the driven-cavity simulation.
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FIG. 8. Lj-norm of the residual versus F(1,1)-cycles with an alternating-plane smoother combined with f
coarsening (APS) for several grids and Reynolds numbers with a symmetric order of planes (top graphs) &
tri-plane ordering (low graphs) for the driven-cavity simulation.

operator for convection-dominated problems in order to obtain the higher efficiency. F
example, it was observed that tke-plane sweeps seriously harm the smoothing, and s
the YSC approach exhibits a poor behavior.

Figure 9 shows thk,-norm of the residual versus F(1,1)-cycles withkgmplane implicit
smoother combined with ZSC for several grids and Reynolds numbers. Although not sho
the behavior exhibited by the XSC approach is similar to the one presented in Fig. 9
ZSC. The S-ZSC approach (top graphs in Fig. 9) converges the residuals to betbw 1
in five cycles for both Reynolds numbers £14nd 16). However, the Tri-ZSC approach
(bottom-charts in Fig. 9) is unable to reduce the residual norm belowihA.0 cycles for
Reynolds number 0 As one might expect, the time per cycle is twice as fast for the tri
plane ordering, although the convergence factor per work unit is better with the symme
ordering for all the cases.

Table Il shows the average convergence factors obtained in the simulation of the driv
cavity problem for several uniform and stretched grids, Reynolds numbers, and F(1
cycles. The convergence factor has been proved to be independent of the grid size
stretching for the two robust approaches investigated; however, the convergence is
Reynolds number—independent for the driven-cavity simulation. The algorithms exhibit 1
same behavior for low Reynolds numbers as when solving the Poisson equation; tha
the residual reduction per cycle is similar in both situations [8]. The convergence fac
improves on stretched grids (as in the fully elliptic case [8]), and as shown in Table II.
also improves for finer grids. The convergence factor for the APS approach is lower t
for the SC approach and its cost per cycle is have as much because the F-cycle spe
lot of time on coarser levels. However, its difficult and low-efficiency parallelization an
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FIG. 9. L,-norm of the average residual versus F(1,1)-cycles witkaplane implicit smoother combined
with ZSC for several grids and Reynolds numbers with a symmetric order of planes (top graphs) and a tri-p
ordering (low graphs) for the driven-cavity simulation.

its difficulty in converging for Reynolds numbers higher thaf hfight make the semi-
coarsening approach more attractive.

4.2. 3-D Flat-Plate Boundary Layer

We consider a square plate placed in the middle of the solution domain. In the west f
(x = 0) we define the inflow boundary with no angle of attack, and so the east face v
hold the outflow condition. On the plate a no-slip boundary condition is imposed, anc
symmetric condition is imposed elsewhere on the domain boundary (see left-hand cha

TABLE Il
Average Convergence Factors Obtained in the Simulation of the Driven-Cavity Problem
for Several Uniform (U) and Stretched (S) Grids, Reynolds Numbers, and Different F(1,1),
Cycles

Grid
32x 32x 32 64x 64 x 64
Re S-APS S-ZSC  Tri-APS  Tri-ZSC S-APS S-ZSC  Tri-APS  Tri-ZSC
10U 16x10°3 0.07 0.14 0.24 X103 0.04 0.17 0.21
1S 14x10° 0.04 0.08 0.23 %103 0.04 0.07 0.2
100U 0.17 0.21 0.25 0.5 0.1 0.18 0.34 0.5

10°S 0.15 0.21 0.3 0.46 0.1 0.15 0.34 0.46
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FIG. 10. Schematic configuration of the flat-plate simulation (left-hand chart)x 48 x 64 grid used for
the flat-plate simulation (right-hand chart).

Fig. 10). In this case, the pressure is not specified at the boundary. As the velocity grac
normal to the wall is very high only in the boundary layer, the thin-layer approximatic
which only retains those terms can be adopted. However, in the following simulations |
original for (1) of the Navier—Stokes equations is solved.

In order to capture the viscous effects, the grid is highly stretched near the plate (
right-hand chart in Fig. 10). Moreover, the grid is refined near the plate edges to reduce
large discretization errors in those zones, as advocated by Themla1]. To ensure that
a sufficient number of grid points will lie inside the boundary layer, the space for a unifor
mesh would impose too high a demand on the computation. For example, approximating
boundary-layer thickness with~ 1/+/Refor Re= 10* we haves ~ 0.01, which implies
at least 18 grid points in a uniform grid, which cannot be considered due to memor
limitations in a 3-D simulation. Thus for this model problem, no regular grids will be
considered. The grids are stretched inzkdirection using a geometric factbg = ghy_;
with 8 = 1.3 for the 24x 24 x 32 grid and8 = 1.1 for the 48x 48 x 64 grid.

The solution is verified by comparing thevelocity in the middle of the plate with the
Blasius analytical solution for a 2-D plate (left-hand chartin Fig. 11). The little discrepan
near the layer edge is due to the highly stretched grid used in this simulation.

12
Simulation o — —r
Blasius Theory -+ P T
! O T B
S y
B
s = =
o8 y et _9» 3 s
g 5 | T
s ‘ ' . '
- g NI 57 o ;
E ] e " ; ;
2 06 w 5B [ 7 ;
z A m (& H 8§ i
. 3 | : :
4 1 i .. 3
0.4 o ; : v‘
i k4
-4
o
02 fdﬂ
0 L
0 1 2 3 ' 5 6 7 s s

Scaled Coordinate y

FIG. 11. Simulation comparison with Blasius theory at the middle of the plate Wi¢h= 10* (left-hand
chart). Pressure contour lines fee= 10* andz = 0 (right-hand chart).
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TABLE 1l
Underrelaxation Factors for the Flat-Plate Simulation as a Function
of the Grid Size, Reynolds Number, and Multigrid Cycle

Grid
24 x 24 x 32 48x 48 x 64
Re L-ZSC Tri-ZSC L-ZzSC Tri-ZSC
10 0.8 0.8 0.8 0.8
10t 0.6 0.4 0.6 0.4

The multigrid cycle employed to solve each level of the FMG is a F(2,1)-cycle. Tt
underrelaxation factors used in the simulations are shown in Table IIl. Depending on
problem, some plane-sweep directions may deteriorate the smoothing. The best smoo
rate was achieved with a combinationof-plane relaxation and ZSC. We do not include
results of the alternating-plane approach or other semi-coarsening directions becau:
their poor behavior.

Figure 12 shows the,-norm of the residual versus F(2,1)-cycles with lexicographic an
tri-planexy-plane implicit smoothers combined with ZSC for several grids and Reynol
numbers. The residual norm is reduced by nearly five orders of magnitude in the first |
cycles in all cases (note that the reduction is of four orders of magnitude in the first t
cycles forthe 48« 48 x 64 grid). In fact, the full multigrid algorithm converges the solution

2 2
L-2SC Re=10G L1ZSC Re=10040
1
0
= -t
T T
=z = 2
g 2
-3
-4
-5 F 51 p
24x24x16 24x24x32 | 48x48x32 | 48x48x64 24x24x16 24x24%32 48x48x32 48x48x64
-6 -6
0 5 9 13 0 5 9 13
Cycles Cycles
2 Tr1-25C Re=100 2 -
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= s 2r
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FIG. 12. L,-norm of the residual versus F(2,1)-cycles with lexicographic (top graphs) and tri-plane (bottc
graphs)xy-plane implicit smoothers combined with ZSC for several grids and Reynolds numbers.



430 MONTERO, LLORENTE, AND SALAS

TABLE IV
Average Convergence Factors Obtained in the Simulation of the
Flat-Plate Problem for Several Stretched Grids, Reynolds Numbers,
and F(2,1)-Cycles

Grid
24 x 24 x 32 48x 48 x 64
Re Tri-ZSC L-ZzSC Tri-ZSC L-ZSC
107 0.07 0.04 0.09 0.02
10 0.13 0.09 0.08 0.03

to below the truncation error with one F(2,1)-cycle per level. The asymptotic converger
rate is equal to 0.19, which is close to that obtained for the Poisson equation with
semi-coarsened approach [13].

Table IV shows the average convergence factors obtained in the simulation of the f
plate problem for different F(2,1)-cycles and several stretched grids and Reynolds numk
Although not included in this report, experiments with Reynolds numbers uptavé@
performed. Convergence rates, independent of the Reynolds number, the grid size,
the stretching factor, were achieved for the resolution of the boundary layer over a
plate. Since the flow is aligned with the grid, the results obtained with the lexicograptf
and tri-plane smoothers are very similar. Furthermore the time per multigrid cycle is ve
similar for both smoothers (similar convergence per work unit). The parallel possibiliti
of tri-plane ordering make this approach more attractive. Results obtained for first-or
accuracy (without QUICK correction) are even better. The residual norm is reduced
nearly five orders of magnitude in the first three cycles and the asymptotic convergence
is equal to 0.1.

5. CONCLUSIONS AND FUTURE WORK

The robustness of two popular FAS multigrid algorithms (alternating-plane smoothe
combined with full coarsening and plane smoothers combined with semi-coarsening)
been investigated through the solution of the incompressible 3-D Navier—Stokes equati
Convergence results have been obtained for two common benchmarks in CFD: the dr
cavity and the flow over aflat plate. Robustness has been defined as the ability of the multi
method to solve the model problem with a convergence rate per work unit independen
grid size, stretching factor, and Reynolds number (TMC).

The convergence factor has been shown to be independent of the grid size and stretc
for the two robust approaches investigated in the driven-cavity simulation. Moreover, |
convergence rate improves on stretched grids and for finer grids. The convergence is
Reynolds numberindependent and infact the alternating-plane approach fails to converg
Reynolds numbers higher than®18lowever, for lower Reynolds numbers, its convergenc
and operation count per cycle is better than that exhibited by the semi-coarsening apprc
The difficult parallel implementation of the alternating-plane smoother and its difficultie
in converging for high Reynolds numbers might make the semi-coarsening approach \
tri-plane smooth ordering more attractive.
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The combination oky-plane smoothing and ZSC has been found to be the best choi

for the flat-plate simulation. Its convergence rate is independent of grid size, stretching,
Reynolds number, and the tri-plane variant exhibits similar properties to the lexicograp

or

dering and allows the parallel implementation of the algorithm. The alternating-pla

approach fails to converge in this case.
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